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ABSTRACT 
Travel time unreliability is an important characterization of transportation systems. The 
appropriate modeling and reporting of travel time reliability is crucial for individual travelers 
as well as management agencies. In this paper, a novel multi-state model is proposed for travel 
time modeling and reporting.  The model advances travel time modeling in two aspects.  First, 
the multi-state model provides much improved model fitting as compared to single-mode 
models.  Second and more importantly, the proposed model provides a connection between 
travel time distributions and the underlying travel time state. This connection allows for the 
quantitative evaluation of probability of each travel time state as well as the uncertainty 
associated with each state; e.g., the probability of encountering congestion on a given time of 
day and the expected travel time if congestion were experienced.  A simulation study was 
conducted to demonstrate the performance of the model.  The proposed model was applied to 
field data collected at San Antonio, TX.  The variation of the model parameters as a function of 
time-of-day was also investigated. The simulation study and field data analysis confirmed the 
superiority of multi-state model over the state-of-practice single-mode travel time reliability 
models and ease of interpretation.   
 
 
 
 
Key words: travel time reliability, Mixture distribution, Multi-state model; travel time 
reliability reporting.  
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INTRODUCTION 
The significant variability in travel time has become a concern for both travelers and traffic 
management agencies. Travel time reliability is related to the uncertainty associated with travel 
time.  The Federal Highway Administration (FHWA) has formally defined travel time 
reliability as "the consistency or dependability in travel times as measured from day-to-day or 
across different times of day".  With ever-increasing traffic demands and limited resources for 
expanding highway capacity, traffic congestion and delay has become an unavoidable attribute 
of the transportation system.  There is a need to understand the characteristics of travel time 
variation, in order to facilitate individual trip decision making and traffic management of the 
overall transportation system.  

Travel time reliability research focuses on quantitatively evaluating travel time 
uncertainty and its spatial and temporal variations. The majority of existing researches have 
attempted to use single-mode distributions to model travel time.  Emam and Al-Deek (1) 
compared the log-normal, gamma, Weibull, and exponential distributions for the modeling of 
travel time data and concluded that a log-normal distribution provided the best fit.  The 
standard single-mode distribution assumes travel time is from a single stochastic process.  
However, this is rarely true due to the complex traffic conditions.  For instance, the mean travel 
time under free-flow conditions and congested conditions can differ substantially. A single-
mode distribution cannot sufficient model the large variation associated with this complex 
situation.   

The travel time reliability measures are quantitative measures of travel time variation 
based on appropriate travel time models. The 1998 California Transportation Plan used percent 
variation, i.e., the standard deviation divided by the average travel time, as a measure of travel 
time reliability (2).  Other measures include the median and percentile (3, 4).  Lomax et al. (5) 
compared various measures and recommended three reliability performance measures:  1) 
percent variation, 2) the misery index (MI), and 3) the buffer time index.  van Lint and van 
Zuylen (6) considered both percentile and the skewness of the distribution in evaluating travel 
time reliability.  More recently, Tu et al (7) has proposed to model travel time according to the 
traffic conditions. 

This paper proposes a multi-state travel time reliability modeling framework for travel 
time modeling and reporting.  This model is based on the premise that travel time is dominated 
by the underlying traffic conditions, which is a complex stochastic process and may contain 
multiple travel time states.  Two levels of uncertainty are quantitatively assessed in the 
proposed model.  The first level of uncertainty is the probability of a given traffic condition; 
and the second level of uncertainty is the variation of travel time for each traffic condition.  
The proposed model also provides an opportunity for a novel easy-to understand travel time 
reliability reporting mechanism build upon existing reliability measure.  Finally the model 
shows much improved model fitting to infield travel time data over the state-of-practice 
models.   

The paper is organized as follows.  The methodology of the multi-state model 
framework is introduced first followed by a simulation study demonstrating the performance of 
the model. Subsequently, the model is applied to field data collected along a section of the I-35 
freeway in San Antonio, Texas.  Finally, the study summary and discussion is presented. 
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METHODOLOGY 
 

Model Formulation 
Travel time can be affected by various factors and multiple states exist along roadway sections. 
For instance, traffic could be operating in a congested state, an uncongested state, and a state 
caused by non-recurrent events such as traffic incidents. It should be noted that the traffic state 
in this paper with respect to travel time.  Different traffic conditions, traditionally defined by 
speed and traffic density status, can have similar travel speed, thus share same travel time state. 
Travel time under different state can have distinct characteristics. In a non-congested state, 
travel speed (and thus travel time) is mainly determined by speed limits and individual driver 
preference.  In a congested state, travel time is dominated by traffic congestion levels and the 
corresponding variation will be higher than the free-flow state.  Similarly, the travel time for 
traffic state caused by traffic incidents is expected to be longer with larger variation compared 
to the free-flow and congested states.  Because of the stochastic nature of traffic flow, various 
travel time states are likely to happen randomly and multiple states can exist for a specific time 
period.  The key question of interest is the probability of encounter a specific state and the 
characteristics of travel time under this state.  

In this paper, a multi-state model is proposed to quantitatively assess the probability of 
a traffic state and the corresponding travel time distribution characteristics.  Mathematically, 
the multi-state model is a mixture of a finite number of component distributions.  The 
component distribution represents the distribution of travel time under the corresponding travel 
time state.  A mixture coefficient is associated with each component distribution representing 
the probability of the specific state. A finite multi-state model with  component distributions 
has the following density function, 

                       (1) 
where  is the travel time;  is the density function of the distribution for 

; ) is a vector of mixture coefficients and ;   is 
a matrix of model parameters for each component distribution;   is a vector 
of model parameters for the  component distribution;  is the density function for 
the  component distribution.  Depending on the nature of the data, the component 
distributions  can be normal, log-normal, or Weibull distributions.     

The  component in Equation 1 represents the distribution of travel time 
corresponding to a specific traffic condition, e,g., congested state and free flow state can have 
their own distinct component distribution. By separating the component distribution, the travel 
time state can be better represented than a single, uni-mode distribution.  The parameter  
represents the probability of each state and has a significant implication in travel time 
reliability reporting.  

A special case of the mixture distribution is a 2-component normal distribution; the 
density function is as follows,  

                (2) 
where  is the mixture coefficient for the first component distribution, which is a normal 
distribution with mean and standard deviation ;  the probability for the second component 
distribution is  and the parameters for the second normal distribution are   and .   By 
varying the component distribution and the mixture proportions, the mixture model is flexible 
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to model a wide range of patterns commonly observed for travel time distributions.  In theory, 
the mixture distribution can approximate any density function (8).    

Fitting the mixture model involves maximum the likelihood function  

 
where  is the   observed trip length from a total  trips. Ordinary maximum likelihood 
estimation (MLE) may not be efficient because of the multiple modes.  Instead, the expectation 
and maximization (EM) algorithm is widely used for estimating parameter estimation and was 
adopted in this paper (9).  The EM algorithm is an iterative procedure involves the following 
major steps. 1) estimate the probability  for each state for every observation based on the 
current values of  and  (the E-step); 2) Find the conditional maximum likelihood estimation 
of  and  for next iteration (the M-step).  The E-step and M-step are repeated until 
convergence has been reached.  

  
Model Interpretation and Travel Time Reliability Reporting 
The multi-state model connects the parameters of mixture distribution with the underlying 
traffic conditions. In particular, the mixture parameter  in Equation 2 represents the 
probability that a particular travel time follows the  travel time state and the component 
distribution,  indicate the distribution of travel time under this state. These 
connections provide an opportunity for a novel two-step travel time reliability reporting 
mechanism.     

The first step is to report the probability of encounter a specific travel time state, e.g., 
the probability of congestion during morning peak. The second step is to report for a given 
state, what is the expected travel time under this state.  Some well-accepted reliability indexes 
can be used in the second step, such as the percentile and the misery index, which can be 
readily calculated from each component distribution.  This is method analog to the widely used 
two-step weather forecasting approach; e.g., ‘the probability of rain tomorrow is 80% and, if it 
does rain, the expected precipitation will be 2 inches/h”.  The same method can be used in 
travel reliability forecasting, i.e., ‘the probability of encountering a congested state in the 
morning peak for the study roadway segment is 67% and, if that happens, the expected travel 
time will be 30 minutes’.   

This two-step reporting scheme provides rich information for both travelers and traffic 
management agencies.  By knowing the probability of a congested or incident state and the 
expected travel time in each state, an individual traveler can make better travel decision based 
on trip purpose.  For traffic management agencies, the proportion of trips in a congested state 
and the travel time difference between the congested state and the free-flow state can provide 
critical information on the efficiency of the overall transportation system. This can also provide 
an opportunity to quantitatively evaluate the effects of congestion alleviation methods.    

 In practice, the interpretation of the mixture parameter  depending how the travel 
time samples were collected.  Two commonly of sampling schemes, the proportional sampling 
and the fixed-size sampling scheme, can be used.   

In a proportional sampling scheme, the number of trips is proportional to the number of 
trips for any given time interval.  For example, in a 10 percent proportional sampling approach, 
10 trips will be selected from every 100 trips during the study period.  For the proportional 
sampling, the probability  can be interpreted from both the macro level and the micro level.  
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From the macro level, this corresponds to the percentage of vehicles in traffic state, e.g.,  the 
percentage of drivers that experience congested traffic conditions.  This macro level 
interpretation can be used to quantitatively assess the system performance by traffic 
management agencies.  The   can also be interpreted from a micro level. Since the relative 
frequency (percentage) can also be interpreted as the probability for individuals, the probability 

 also represents the probability that a particular traveler will travel in state  in the given 
time period.  This is most useful for personal trip planning.   

In a fixed-size sampling scheme, a fixed number of trips are sampled for a given time 
period regardless of the total number of trips for this time period.  For example, 30 trips will be 
sampled every 10 minutes is a fixed-size sampling.  The  under a fixed sample scheme 
represents the proportion of the total duration where traffic condition is in the  condition.  
For example, a  value of 80% for the congested component implies that out of one hour (60 
minutes), the traffic was in a congested state for a total of   The fixed 
sampling scheme also provides useful information for individual travelers; i.e., the proportion 
of time the traffic will be in a congested condition.   

 
SIMULATION STUDY 
To evaluate the model performance and validate the interpretation for the mixture coefficient, a 
simulation study was conducted. The simulation focused on the model performance under two 
alternative sampling schemes. The simulation was conducted using the INTEGRATION 
software (10).  The simulation network is a single 16-mile expressway corridor (I-66) in the 
Northern Virginia Area.  The highway has seven on-ramps and seven off-ramps. A high off-
ramp traffic demand was observed at an intermediate exit resulting in congestion which form a 
bottleneck in the network during peak hours.  The analyses include trips that traveled the entire 
16-mile segment.  This network is identical to that used in a simulation validation paper and 
more details can be found within (11). 

The simulation scenarios were generated by varying the traffic demand.  An origin-
destination (O-D) matrix was developed using field loop detector traffic volume 
measurements.  A congested state and an uncongested state were created by scaling the original 
O-D matrix (with a peak demand of 16,000 trips/hour) by a constant scaling factor.  The total 
demand for the congested scenario was about two times higher than the demand for the 
uncongested state. The approximate travel times for the uncongested state and the congested 
state were 14 minutes and 35 minutes, respectively.  To mimic the natural fluctuation of traffic 
demand, the demands for each scenario were allowed to vary uniformly within 10% of the 
original O-D matrix.  Altogether 500 hours of non-congested and 500 hours of congested states 
were generated.  It should be noted that the hour was a symbolic time unit and the results from 
the simulation will hold for any time unit. To avoid any potential confusion, the term time unit 
will be used to refer to one of the 1,000 simulation outputs.    

The mixture scenarios were generated by sampling from the 1,000 time units of 
simulation output. The model performance under both proportional sampling and fixed-size 
sampling were evaluated.  The 2-component normal mixture model (Equation 2) was used to 
fit to the simulated data. 
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Proportional Sampling 
In a proportional sampling scheme, the number of trips sampled in a given time period is 
proportional to the total number of trips in that time period.  In general, the congested state 
contains more trips than the free-flow state, thus more trips are sampled from the congested 
state for the same time duration.  Analysis based on all trips is a special case of proportional 
sampling with a sampling rate of 100%.  The simulation study was designed to study the effect 
of the percentage of time units in congested state and the sampling rate on model performance.   

A total of 12 scenarios were simulated based on percentage of times in the congested 
state and the sampling rate.  For each scenario 100 simulations were conducted and, in each 
simulation, 100 time units were sampled according to the percentage congested and sampling 
rate.  The percent of trips in the congested state, mean, and standard deviation of the TRUE 
values of simulated data were calculated. The same set of parameters was also estimated from 
the 2-component normal mixture model (Equation 2).  A comparison of the TRUE parameters 
to those estimated from the mixture model estimated is shown in TABLE 1.   

The performance of the model was evaluated using the mean absolute relative different 
(MARD).  The MARD for  is defined as , where  and  are the true and 
estimated mixture proportion parameters respectively;  is the number of simulations 
(  in this study) and  is the average true parameter, i.e., .  A smaller 
MARD indicates that the estimated value is closer to the true value.  

As demonstrated in TABLE 1, in scenarios with a small proportion of the congested 
state, the estimations for all five model parameters ( ) were very close to the true 
values.   For three high-congestion scenarios, (75% of time units in congested state), the model 
underestimates the true proportion and overestimates the variance of the travel time in the free-
flow state.  The reason for the bias is that a single normal distribution cannot sufficiently model 
the travel time in the congested state when the percentage is high. This problem can be 
resolved by introducing a third component or by using alternative component distributions (e.g. 
log-normal, gamma, etc.).  

The results also confirm that the estimates are robust to the sampling rate.  A practical 
implication is that a relatively small sample will also provide satisfactory estimation and the 
cost of data collection can be significantly reduced. 
 
Fixed-size Sampling 
In a fixed-size sampling scheme, a fixed number of trips would be sampled for any given time 
period.  In this sampling method, the number of trips in a congested state is proportional to the 
duration of the congested state in the study period.  A total of four simulation scenarios were 
generated; each scenario consisted of 100 simulations.  The sample size for each time unit was 
set to 50.  Consequently, the true percentage of trips in the congested state is identical to the 
proportion of time units in the congested state.  The simulation results are shown in TABLE 2.  
Similar to the proportional sampling scheme, the multi-state model also provides a very 
accurate estimation for the model parameters. The estimation of  for a small proportion of the 
congested state is less than 1 percent.  The fixed-size sampling showed more stable estimates 
for the high congested proportion than did the proportional sampling.    

The simulation study indicated that, in general, the multi-state model does reflect the 
characteristics of travel time under different traffic conditions.  The parameters of the 
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component distribution can be estimated satisfactorily and the interpretation of the mixture 
parameters will depend on the sampling scheme. 

 
MODEL APPLICATION 
The multi-state model was applied to a data set collected from Interstate I-35 near San 
Antonio, Texas as shown in FIGURE 1.  The traffic volume near downtown San Antonio 
varied between 89,000 and 157,000 vehicles per day (veh/day). The most heavily traveled 
sections were near the interchange with I-37, with average daily traffic counts between 141,000 
and 169,000 vehicles, and between the southern and northern junctions with Loop 410 
freeway, with average daily traffic counts between 144,000 and 157,000 veh/day. The analysis 
covered a 16-km freeway section delimited by the automatic vehicle identification (AVI) 
stations at New Braunfels Ave. (Station no. 42) and O’Connor Rd. (Station no. 49).  Vehicles 
were tagged with ratio frequency (RF) and the travel times for each tagged vehicle were 
recorded whenever they passed any pair of AVI stations.  The RF tags were randomly assigned 
to participant vehicles.  The trip frequencies for the tagged vehicles can be assumed to be 
proportional to the total traffic volume; therefore, the interpretation of the mixture component 
follows that of the proportional sampling scheme as introduced above. Within the study 
corridor, traffic data were gathered at six locations (stations 42 through 49) from June 11, 1998 
to December 6, 1998.   To investigate the travel time on a typical working day, data from 21 
Mondays were selected for modeling. 

FIGURE 2 (a) illustrates the variation of travel times and the corresponding time of day 
the trips occurred (mid-point of a trip).  As can be seen, the majority of the trips fall within a 
relatively narrow interval (more than 90% of the data fall within one standard deviation of the 
mean).  A considerable number of trips have substantially longer travel times.  Interestingly, 
most of these long trips occur in the morning (6AM-10AM) and afternoon (3PM-7PM) peak 
hours.  The congestion caused by traffic demand exceeding capacity could contribute to long 
travel times and this is consistent with the distribution of number of trips over the time of day, 
as shown in the histogram in FIGURE 2 (b).    

A natural explanation for the patterns shown In FIGURE 2 is that multiple traffic 
conditions exist, e.g., a free-flow state and a congested stage etc.  It is interesting to observe 
that even during morning peak hours, a large proportion of trip time is still similar to that of the 
free-flow state.  This implies that when the traffic demand is high, the traffic flow can still 
travel near the speed limit and the trip duration will be similar to the free-flow travel time.  
However, the stability of traffic flow during high demand is vulnerable and is more likely to 
transfer to a forced-traffic state. Thus, multiple travel state can co-exist in a given time period.  

This multi-traffic-state concept is consistent with the assumption of a mixture 
distribution.  Any trip during the morning peak hours will fall in one of the states with certain 
probability.  The travel time for an individual trip will thus be determined by the probability of 
falling in each state and the distribution of travel time for the corresponding state.  A trip 
occurring during the morning peak will have a higher probability to fall in a forced-traffic state 
than a trip during non-peak hours.  When a trip falls in a forced-traffic state, its duration is a 
realization from the distribution for this state, which tends to have a larger mean than the free-
flow state.   

The multi-state model was applied to the morning peak travel time from Station 49 to 
Station 42, which includes 521 trips.  Three alternative models, a 2-component model 
(Equation 2), a 3-component model, and a state-of-practice log-normal model were fitted.  The 
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model fitting results for the multi-state models are presented in TABLE 3 and illustrated in 
FIGURE 3.   

To compare the performance of the model, the Akaike information criterion (AIC) was 
used. The AIC is defined as . where  is the likelihood function and  is the 
number of parameters. A smaller AIC value indicates better model.  As can be seen, the 3-
component model provides substantially better model fitting than the 2-component model (AIC 
7124 versus 7020).  The log-normal model (mean=6.75 sd=0.379) has AIC value of 7236, 
which is substantially larger than both mixture models. The improved model fitting can also be 
observed intuitively from FIGURE 3, in which the density functions of the mixture models fit 
the data histogram more closely. In summary, the multi-state model provides a significant 
improvement over single model based models.  

The third component of the 3-component model is corresponding to a traffic-state 
caused by non-recurrent congestion with low probability. Interestingly, the parameters of the 
first component have exactly the same values as the 2-component model, which is expected 
since they both correspond to the free-flow state.   

The 2-component model is composed of two component normal distributions. The first 
distribution has a smaller mean which corresponds to the free-flow state while second 
component corresponds to the forced traffic flow state.  Following the aforementioned two-step 
reporting scheme, the probability that a driver encounters a congested traffic state is twice that 
of encountering a free-flow state (67% versus 33%).  The average travel time for a congested 
state is almost twice as long as that for the free-flow state (1089 versus 588 seconds).  The 
standard deviation for forced-state is substantially larger: 393 versus 38 for the free-flow state.   
 The standard statistical package R used in this study does not provide the estimation 
errors. To provide a quantitative evaluation of the estimation errors, a bootstrap method was 
used (12). The bootstrap consists of the following steps: 1) resample the same number of 
observations with replacement from the original data (bootstrap samples); 2) estimate the 
parameters by fitting the bootstrap samples; 3) repeat step 1 and 2 for a large number of times; 
4) use the generated parameter estimation to calculate the standard deviation of the model 
parameters. The ratio between the standard deviation and the point estimation is in generally 
smaller than 1, which indicates reasonable estimation for this sample size in this analysis. 

To evaluate the travel time reliability for a specific state, the 90th percentile travel time 
was adopted although all the reliability indexes as summarized by Lomax et al. (5) can be 
readily calculated from the component distributions. The 90th percentile travel time for the 
congested state is calculated as:  

90th percentile of .  
The 90th percentile for free-flow-sate can be calculated similarly.  

The report of the travel time follows a two stage procedure.  First, a driver has a 67% 
probability of encountering a congested state, if the congestion does happens, 90% of the time 
the travel time will be within 1,593 seconds.  Alternatively, there is a 33% probability of 
encounter a non-congested state and if this happens, 90% of the chance the trip length will be 
within 637 seconds. The interpretation for the 3-component model is similar. This reporting 
method is similar to the weather forecasting and is easy to be accepted by general public.  The 
method also provides a mechanism to direct the trip decision making.  For instance, if a driver 
has an important trip need to arrive on time, based on the probability of encountering 
congestion and expected travel time he/she can choose proper starting time to ensure arriving 
destination on time with high probability.  
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Variation of Mixture Parameters over Time of Day 
The parameters of the multi-state model reflect the characteristics of the corresponding state 
and the probability to encounter a specific state.  It is expected that the probability of 
encountering a congested state will be higher in peak hours compared to non-peak hours.  
Thus, the mixture proportion should vary according to the time of day.  Furthermore, traffic 
congestion level will change over time of day thus the distribution of travel time under 
congested state should not be treated as constant.  Therefore, it is important to evaluate how the 
model parameters vary by time of day.   

The full day data from the 21 Monday was used to exam the time of day variation.  The 
travel times were grouped to 24 groups by starting hour.  A 2-component mixture model with 
normal component distribution was fit to each stratum.  The parameter estimates for the 24 
strata are shown in TABLE 4 and FIGURE 4.  The blue lines represent estimated parameters of 
the first component and the red dotted lines represent those of the second component.  
FIGURE 4 (a) illustrates the temporal variation in the distribution means, i.e.,  and , while 
FIGURE 4 (b) illustrates the temporal variation in the standard deviation, i.e.,  and  over 
time of day. FIGURE 4 (c) illustrates the temporal variation in the mixture coefficient s; and 
FIGURE 4 (d) shows the 90th travel time percentile for component distributions over time the 
entire day. 

As can be seen, the means and standard deviations of the travel times in the free-flow 
state, s and s, show little fluctuation across the day.  The travel time distribution for the 
forced state does demonstrate some interesting patterns.  For non-peak hours, i.e., before 6:00 
AM and after 8:00 PM, the two component distributions are very similar, i.e.,  and 

.  In this case, the mixture coefficients are not relevant because the two traffic states are 
essentially equal.       

In the case of the forced traffic state (the second component distribution), the mean and 
standard deviation show a clear increase starting from 7:00 AM.  The upward trend continues 
until it peaks at 10:00 AM and then starts to drop.  The values of  fluctuate during the 
daytime and show another surge from 2:00PM to 7:00PM.  The pattern of  is consistent with 
peak and off-peak traffic patterns, which confirms the existence of a congested state.   

The mixture coefficient  indicates the percentage of trips falling in each state when the 
two component distributions differ.  As can be seen for FIGURE 4 (c), in the morning and 
afternoon peak hours (7-9 AM, 5-6PM), the probability of the congested state is high (55% and 
44% for 7-8AM and 8-9 AM, respectively; and 29% for 5-6PM).  There is a relative small 
probability of encountering the congested state during the day time which is approximately 
10%.  This trend is consistent with traffic demand patterns in the study area.  

FIGURE 4 (d) shows the 90th percentile travel time for each component distribution.  
As can be seen, the off-peak prediction for both states is very similar.  The reliability measure 
for the free-flow state is very consistent throughout the day.  The 90th percentile travel time for 
the congested states, however, varies significantly over the entire day. The 90th percentile 
travel time for the morning and afternoon peak hours are much higher than the free-flow state.  
The results presented in TABLE 4 and FIGURE 4 can provide important information for 
travelers for trip planning purpose.    
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SUMMARY AND DISCUSSIONS  
Travel time reliability modeling and reporting is a critical component of travel time reliability 
research.  It will provide much needed information for both traffic management agencies and 
individual travelers.  The multi-state travel reliability model proposed in this paper showed 
several advantages.  First, the model is flexible and can provide superior fitting to travel time 
data comparing to traditional single-mode models such as the log-normal distribution.  Second 
and most importantly, it provides a direct connection between model parameters and the 
underlying travel time state.  This connection will benefit both individual travelers and the 
management agencies.  For individual travelers, a two-state travel-time forecasting method 
provides a mechanism analogous to the familiar weather forecasting system that should be 
easily accepted by the general public.  For management agencies and researchers, the 
proportion of travelers in inferior traffic conditions and the corresponding delays as estimated 
from the multi-state model provides a quantitative way of evaluating traffic system 
performance.      

The simulation study confirmed that the model coefficients do represent the 
characteristics of underlying traffic conditions and the probability of each state.  The 
simulation study also validated the performance of the multi-state model under fixed-size 
sampling and proportional sampling.   

The application of the mixture model to the San Antonio AVI travel time data indicated 
the existence of multi-state traffic conditions in the field.  The analysis indicated that even 
during peak periods, there remains a substantial proportion of trips that travel at significantly 
shorter travel times.  The analysis also implies that there might exist another state with much 
longer travel times and variability but with a small probability of occurrence, which could be 
the delay caused by traffic incidents.  The variation of model parameters over time of day 
showed how traffic conditions changed temporally and their impacts on the travel time 
distribution.  This analysis also demonstrated how travel time reliability reporting can be 
structured by time of day.  

This paper developed a general framework for multi-state travel time modeling and 
reporting.  There are several issues that still need to be investigated.  The simulation indicates 
that the proportional sampling provides less model fitting for scenarios with a large proportion 
of congested traffic, which deserves further investigation.  Another important question is how 
many samples are needed to produce a reliable estimation.  This paper uses normal component 
distributions and the appropriateness of alternative distributions such as log-normal or Weibull 
distributions is worth investigation.  The number of component distribution is predefined in 
this study.  To formally determine the optimal number of component distribution is alosworth 
investigation.  Finally, the parameters of the model has only been related to time of day, to 
connected with other factors such weather condition will be also be of interest.  
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TABLE 1  Simulation Results for Proportional Sampling 
 
Proportion 

of time 
units in 

congested 
stage 

Sampling 
rate 

Mean 
Percent 

of trips in 
congested 

stage 
(TRUE) 

 

Mean 
estimation for 

 
(ESTIMATED) 

MARD 
for  

MARD 
for * 

MARD 
for  

MARD 
for  

MARD 
for  

 100% 17.5% 17.2% 0.5% 0.0% 1.8% 0.4% 9.4% 
10% 50% 17.5% 17.3% 0.4% 0.0% 1.4% 0.4% 7.5% 
 10% 17.3% 17.2% 0.4% 0.0% 1.4% 0.5% 7.5% 
 100% 38.9% 38.6% 0.8% 0.1% 1.2% 1.5% 6.8% 
25% 50% 38.8% 38.4% 0.8% 0.1% 1.2% 1.3% 6.8% 
 10% 38.5% 37.9% 0.9% 0.1% 1.5% 1.4% 8.4% 
 100% 65.6% 64.1% 1.8% 3.1% 1.6% 31.0% 8.1% 
50% 50% 65.5% 61.5% 4.7% 7.8% 2.1% 76.8% 10.4% 
 10% 65.3% 62.8% 4.7% 8.4% 2.4% 86.0% 11.4% 
 100% 85.1% 73.1% 12.1% 28.2% 1.4% 243.8% 12.0% 
75% 50% 85.1% 72.4% 13.1% 32.8% 1.4% 274.4% 12.6% 
 10% 84.9% 74.7% 12.0% 30.8% 2.1% 234.0% 13.9% 

*  and  correspond to free-flow state;  and  correspond to congested state. 
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TABLE 2  Simulation Results for Fixed-size Sampling Method 
 

Proportion 
of time 
units in 

congested 
stage 

Sample 
size per 

time 
unit 

Mean 
Percent of 

trips in 
congested 

stage 
(TRUE) 

Mean 
estimation for 

 
(ESTIMATED) 

MARD 
for  

MARD 
for * 

MARD 
for  

MARD 
for  

MARD 
for  

10% 50 10% 10.1% 0.2% 0.0% 0.8% 0.3% 3.5% 
25% 50 25% 24.8% 0.6% 0.1% 1.3% 0.7% 7.4% 
50% 50 50% 49.4% 1.2% 0.1% 1.4% 1.9% 8.4% 
75% 50 75% 72.0% 4.8% 9.0% 1.7% 88.6% 9.7% 

*  and  correspond to free-flow state;  and  correspond to congested state. 
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TABLE 3  Mixture Normal Model Results for Morning Peak Travel Time 
 
 2-component model 3-component model 

 Mixture 
Proportion 

 

SD* Mean 
 

SD  SD Mixture 
Proportion 

 

SD Mean 
 

SD  SD 

Comp. 1 33% 0.16 588 71 38 68 0.33 0.04 588 17 38 11 

Comp. 2 67% 0.16 1089 177 393 60 0.59 0.09 981 42 230 38 

Comp. 3 NA  NA  NA  0.08 0.08 1958 172 223 65 

Log 
likelihood 

-3567 -3503 

AIC  7144 7020 

Travel 
time 
reliability  

Reporting 

1. The probability of encountering a 
congested state is 67%; when this 
happens, 90% of the time the trip will 
be less than 1,592 seconds.* 

2. The probability of encountering a free-
flow state is 33%; when this happens, 
90% of the time the travel time will be 
less than 637 seconds.  

 

1. The probability of encountering a 
congested state is 59%; when this 
happens, 90% of the time the trip will 
be less than 1,276 seconds. 

2. The probability of encountering a free-
flow state is 33%; when this happens, 
90% of the time the travel time will be 
less than 637 seconds.  

3. The probability of encountering an 
incident state is 8%; when this happens, 
90% of the time the travel time will be 
less than 2,244 seconds.  

*: SD is the bootstrap standard deviation for parameters. 
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TABLE 4  Mixture Model Parameters over Time of Day 
 

 Mixture 
Coefficient 

Mean Standard 
Deviation 

90th Percentile 

Time  
 

* 
      

0:00-1: 00AM 94% 6% 600 651 31 128 640 815 
1-2 AM 51% 49% 574 615 26 26 607 648 
2-3 AM 48% 52% 581 612 27 23 616 641 
3-4 AM 28% 72% 553 613 18 29 576 650 
4-5 AM 48% 52% 577 598 46 31 636 638 
5-6 AM 79% 21% 567 581 43 19 622 605 
6-7 AM 94% 6% 566 695 36 82 612 800 
7-8 AM 44% 56% 595 951 39 280 645 1310 
8-9 AM 56% 44% 577 1220 40 465 628 1816 
9-10 AM 96% 4% 572 1350 45 291 630 1723 
10-11 AM 86% 14% 564 679 36 63 610 760 
11 AM-12 PM 92% 8% 569 932 35 234 614 1232 
12-1 PM 94% 6% 570 667 30 18 608 690 
1-2 PM 70% 30% 563 601 30 40 601 652 
2-3 PM 89% 11% 578 810 32 199 619 1065 
3-4 PM 89% 11% 580 1108 43 454 635 1690 
4-5 PM 88% 12% 589 838 45 157 647 1039 
5-6 PM 71% 29% 583 774 45 122 641 930 
6-7 PM 97% 3% 564 728 38 17 613 750 
7-8 PM 49% 51% 541 593 21 25 568 625 
8-9 PM 65% 35% 553 605 29 20 590 631 
9-10 PM 52% 48% 560 607 34 25 604 639 
10-11 PM 50% 50% 579 615 34 26 623 648 
11 PM-Midnight 27% 73% 567 624 44 29 623 661 

     * The second component distribution corresponding to congested stage 
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FIGURE 1  San Antonio study corridor. 
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FIGURE 2  The distribution of travel time over time of day. 
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FIGURE 3  The 2- and 3-component mixture-normal model for morning peak travel 

time. 
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FIGURE 4  The variations of mixture parameters over time of day: (a) Variation of  
over time of day.(b) Variation of  over time of day;  (c) Variation of  over time of day; 

(d) ) Variation of 90th percentile over time of day.   

(a) (b) 

(c) (d) 
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ABSTRACT 
Travel time reliability has received much attention from researchers and practitioners because 
it not only affects driver route choice behavior but is also used in the assessment of a 
transportation system performance. The current state-of-the-art travel time reliability research 
assumes that roadway travel times follow a uni-modal distribution. Specifically, either a 
Weibull, exponential, lognormal, or normal distribution is used within the context of travel 
time reliability modeling. However, field observations demonstrate that roadway travel times 
are multi-modal especially during peak periods. This paper demonstrates that the multi modes 
observed in field data are a result of temporal variations in travel times both between and 
within days. The study evaluates the potential for generating multi-modal travel times using the 
INTEGRATION software and investigates the underlying traffic states that result in these 
multi modes. The study validates the two-state model proposed in an earlier study and 
demonstrates the robustness of model parameter estimates under varying stochastic traffic 
congestion levels and sampling techniques.  
 
Keywords: travel time, travel time estimation, travel time model, travel time variability, travel 
time reliability, and mixture model. 
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INTRODUCTION 
Since the provision of accurate travel time estimates is critical in guiding travelers 
successfully, travel time estimation techniques have been studied extensively to build 
successful Advanced Traveler Information Systems (ATISs). From a data collection 
perspective, loop detectors, video detection, and probe vehicles are commonly used in most 
systems to estimate travel times using algorithmic techniques. The most widely used method is 
the instantaneous method due to its simplicity and ease of implementation. The travel time of a 
trip is calculated by summing the travel times of all the links that compose the route at the time 
the trip begins, under the assumption that traffic conditions remain constant until the trip is 
completed [1-2]. Consequently, this method does not have the ability to capture the temporal 
variabilities in travel times.  

In the early stages of implementing ATISs, much of the research efforts focused on the 
estimation of mean travel times. However, given that the provision of accurate travel time 
information is difficult when heavy congestion occurs on roadways, the concept of travel time 
reliability has been recognized as important as mean travel time information to reduce 
travelers’ uncertainty. Travel time reliability, which is the opposite of variability, has been 
accepted as a critical factor for travelers to secure their on-time travels. In addition, travel time 
reliability is considered as an operational performance measure for traffic operations managers. 
Consequently, much attention and effort have been devoted to developing reliability and 
variability measures. The currently used travel time reliability measures include the 90th or 95th 
percentile travel time, travel time index, buffer index, planning time index, misery index, 
standard deviation of travel time, and coefficient of variation of travel time considering a single 
uni-modal distribution of roadway travel times [3-4]. For example, the Washington State 
Department of Transportation (WSDOT) provides the 95% reliable travel times that are 
generated from historical data on their website.  

Typically travel time reliability studies assume that travel times follow a unimodal 
normal or lognormal distribution. However, field travel time data were demonstrated to follow 
a multimodal distribution [5]. A two-state mixture model was proposed to capture the bimodal 
distribution of travel times. The objectives of this paper are two-fold. First, the paper 
demonstrates that microscopic traffic simulation can replicate field observed travel time trends 
and analyzes the causes of these multi modes. Second, the paper validates the two-state model 
parameter estimation procedures under varying stochastic traffic demand levels. 

The study initially introduces the mixture model formulation. Second, the microscopic 
traffic simulation model is validated by comparing to field observations.  Third, the study 
validates the two-state mixture model parameter estimates using travel time data generated by 
the simulation tool. Simple scenarios are initially tested followed by testing on more 
comprehensive and complicated scenarios. Finally, the conclusions and recommendations for 
future research are presented.  

MIXTURE MODEL FORMULATION 
A multi-state mixture model is defined as a distribution that convexly combines component 
distributions that are selected from a parametric family [6].  The following is the formulation 
of a mixture model 

1
( , ) ( , )

K

k k
k

f T f Tλ θ λ λ θ
=

= ∑ , [1] 
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where λ=(λ1, λ2,…, λn) is a vector of mixture coefficients and θk=(θk1, θk2,…, θkI) is a vector of 
model parameters for the kth component distribution; fk(t|θk) is the density function for the kth 
component distribution. 

If the components are all normally distributed, then θ represents the unknown mean and 
variance of the various component normal distributions. In this study, a mixture of two 
component normal distributions (k=2) are only considered for ease of interpretation of the 
results when they are displayed to the general public. 

The methodologies used to calibrate the mixture model parameters include the 
Expectation Maximization (EM) algorithm, Markov-chain Monte Carlo (MCMC) simulation, 
and spectral methods [6]. This study uses the EM algorithm to estimate the mixture model 
parameters. The EM is an iterative algorithm that involves two steps in computing the 
maximum likelihood parameter estimates: an expectation step and a maximization step. In the 
expectation step, the distribution for the unobserved variables is estimated.  In the 
maximization step, the parameters with maximum likelihood are re-estimated [6-7]. Since the 
EM algorithm is implemented in most statistical and/or computational software including R, 
SAS, and MatLab, the calibration of model parameters is fairly straightforward if one is 
familiar with these software. As such the use of the EM algorithm will not be discussed further 
in the paper. 

The multi-state model provides a convenient travel time reliability analog to the well-
accepted weather forecasting example.  The general population is familiar with the two-step 
weather forecasting approach; e.g., “the probability of rain tomorrow is 80% and, in the event 
that it does rain, the expected precipitation is 2 inches/h”.  The same method can be used in 
travel reliability forecasting, i.e., “the probability of encountering congestion in the morning 
commute is 67% and, in the event that one encounters congestion, the expected travel time is 
30 minutes”.  Furthermore, the travel time under each state can be reported using well-accepted 
indices such as the percentile and the misery index, which can be readily calculated from each 
component distribution. 

MICROSCOPIC TRAFFIC SIMULATION MODEL VALIDATION 
This section demonstrates that microscopic traffic simulation can replicate bimodal travel time 
distributions that are observed in the field. First, the INTEGRATION and QueensOD software 
are introduced because they are used in the study. Second, the traffic network and traffic 
demand are described. Third, the travel times that are generated by the simulation tool are 
compared with field observed travel times. 

INTEGRATION and QueensOD Software 
A section of the eastbound lanes of Interstate 66 (I-66) was simulated using the 
INTEGRATION microscopic traffic simulation software. Travel times along the study section 
were used to generate travel time distributions for the validation of the mixture models. The 
INTEGRATION model is a microscopic traffic assignment and simulation software that was 
developed over the past decade [8-11]. It was conceived as an integrated simulation and traffic 
assignment model and performs traffic simulations by tracking the movement of individual 
vehicles every 1/10th of a second. This level of resolution allows for detailed analyses of lane-
changing movements and shock wave propagations. It also permits considerable flexibility in 
representing spatial and temporal variations in traffic conditions. The INTEGRATION model 
updates vehicle speeds based on a user-specified steady-state speed-spacing relationship and 
the speed differential between the subject vehicle and the vehicle immediately ahead of it. In 
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order to ensure realistic vehicle accelerations, the model uses a vehicle dynamics model that 
estimates the maximum vehicle acceleration level. Specifically, the model utilizes a variable 
power vehicle dynamics model to estimate the vehicle’s tractive force that implicitly accounts 
for gear-shifting on vehicle acceleration. This model is described in more detail in the literature 
[12-13]. 

The calibration of O-D demands to field observed link flows is a problem that has been 
the focus of extensive research. The most renowned of the approaches is the maximum 
likelihood approach that was first formulated by Van Zuylen and Willumsen [14] and 
Willumsen [15] and by Van Aerde et al. [16-17]. The traffic demand for a sample day were 
estimated using a maximum likelihood synthetic O-D estimation software entitled QUEENSOD 
[16-19]. The QUEENSOD software estimates the maximum likelihood O-D table that replicates 
the field observed link flows. The numerical solution begins by building a minimum path tree 
and performing an all-or-nothing traffic assignment of the seed matrix. A relative or absolute 
link flow error is computed depending on user input. Using the link-flow errors, O-D 
adjustment factors are computed and utilized to modify the seed O-D matrix. The adjustment 
of the O-D matrix continues until one of two criteria are met, namely the change in O-D error 
reaches a user-specified minimum or the number of iterations criterion is met. 

Network Construction and Traffic Demand Calibration 
The network extends from Manassas (Virginia) west to Vienna east (Exit 46 to Exit 62), and 
includes seven on-ramps and seven off-ramps along the 16-mile study section, feeding traffic 
to the Washington D.C. metropolitan area as can be seen in FIGURE 1 [20]. Since I-66 is the 
only major highway running to and from Washington, D.C. from the west end, traffic from the 
west to Washington, D.C. is heavy during the morning peak period (5:00 a.m. to 10:00 a.m.). 
Average daily traffic (ADT) volumes on the section from Route 29 (Lee Highway) to Route 
234 (Sundly Road) were estimated at 87,000 vehicles per day in 2005 [21]. 

There were a total of 31 loop detectors – typically spaced every 0.5 miles – available 
within the study segment. An earlier study analyzed the loop detector data over a 3-month 
period, from May 1, 2002 to July 31, 2002 for a total of 44 days [20]. Origin-destination 
demands were constructed for each 15-minute interval over the 44 days. The analysis period 
included four Mondays, nine Tuesdays, eight Wednesdays, seven Thursdays, six Fridays, five 
Saturdays, and five Sundays. The study concluded that the temporal variation in the total traffic 
demand was similar for each weekday. Mondays and Fridays were different from typical 
weekdays while Saturdays showed a higher demand when compared to Sundays.  For 
weekdays, the coefficient of variation (CV) remained relatively constant between 5:00 a.m. and 
11:00 p.m. (10-20%), reaching higher values during the early morning hours (from 3:00 a.m. to 
5:00 a.m., 60%). O-D demands were constructed for a total of 13 typical weekdays (only 13 of 
the 24 Tuesdays through Thursdays had complete data) to reflect the spectrum of typical 
weekday traffic conditions along the I-66 corridor. The total demand (sum of all O-D demands) 
for each day as a function of the time-of-day was computed. The temporal variation in the 13 
total demands is similar with stochastic variations, as demonstrated in FIGURE 2 (a). The 
lowest demand is approximately 75% of the largest demand. Using the calibrated O-D 
demands a 3-hour window within the morning peak period (6:00 to 9:00 a.m.) was simulated. 
As can be seen in FIGURE 2 (b) through (d), the simulated morning peak conditions over the 
13 days demonstrate a scatter in the data similar to what is typically observed in the field [22]. 
FIGURE 2 (d) demonstrates that the experienced travel times during the morning peak period 
over these 13 days can be grouped into two distinct states: congested and uncongested.  
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Consequently, the proposed two-state model can be used to represent the observed spectrum of 
traffic conditions, as illustrated in FIGURE 2 (e). In summary, the proposed two-state 
hypothesis is valid even though the traffic conditions vary over the entire spectrum of the 
fundamental diagram.  

Simulation Validation 
The 13 O-D tables were simulated using the INTEGRATION software. The travel time 
experiences of all trips originating from the west end of the network and traveling to the east 
end were extracted from the simulation output. The travel times during the morning peak hour 
from 6 a.m. to 8 a.m. were extracted to only consider congested conditions. The distribution of 
simulated travel times was compared to field observed travel times gathered along a section of 
the I-35 Highway in San Antonio, Texas in an attempt to validate the simulated travel time 
trends. The I-35 corridor (which is a 16-kilometer highway section from New Braunfels Rd. to 
O’Connor Rd.) connects downtown San Antonio and the northeast neighborhoods of the 
metropolitan area and has a total of six Automatic Vehicle Identification (AVI) stations [23]. 
AVI data collected from June 11, 1998 to December 6, 1998 were obtained from the 
TransGuide system and analyzed. Travel time data during the morning peak hours (7 a.m. to 9 
a.m.) were extracted from a total of 21 Mondays of AVI data. It should be noted, that because 
travel time data were not available along the I-66 corridor the I-35 corridor field observed 
travel times were analyzed. Furthermore, because loop detector data were not available along 
the I-35 corridor it was not possible to construct a simulation model of the I-35 corridor. 

FIGURE 3 illustrates the travel time histograms and fitted two-state mixture models 
using the simulated (13 days of I-66) and field (21 days along I-35) data over multiple days. As 
is evident from the figure, the shape of the simulated travel time histogram resembles that 
generated from the field data with both datasets producing multiple travel time modes. The 
results clearly demonstrate that a simulation platform can replicate field observed travel time 
distributions and that the multiple modes are a result of temporal variations in traffic demands 
within and between days. In this case the modes are a result of temporal variations between 
days. 

VALIDATION OF MODEL PARAMETER CALIBRATION PROCEDURES 
This section tests and validates the two-state model using the traffic simulation platform that 
was described earlier. As demonstrated in the previous section, the simulation tool was 
demonstrated to replicate field observed travel time behavior. Furthermore, the simulation tool 
provides for a controlled environment where data can be gathered on all vehicles within the 
system without the need for costly field data collection efforts.  

Given that the typical variability in weekday traffic demands were in the range of 20%, 
the O-D demand for a typical day (Tuesday, May 7, 2002) was used together with a lower 
demand (20% lower). A visual inspection of the INTEGRATION simulation for the typical 
demand confirmed local bottlenecks along the study section. Specifically, localized congestion 
that resulted from a high off-ramp traffic demand, formed upstream of the off-ramp while 
uncongestion was observed downstream of the bottleneck. A reduced traffic demand of 80% 
the total demand was also simulated for a less congested weekday. A total of 96 O-D tables 
were constructed considering 15-minute interval time dependent O-D demands.  In conducting 
further analysis only two traffic demands were considered (lowest and highest), as illustrated in 
FIGURE 4 (a). FIGURE 4 (b) illustrates the macroscopic fundamental diagram (MFD), which 
is an alternative to the classical flow-density fundamental diagram. The MFD, which was 
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proposed by Geroliminis and Daganzo, provides a macroscopic measure of performance of a 
transportation network similar to a fundamental diagram for a roadway segment [24]. The 
network vehicle accumulation is equivalent to the traffic stream density and the network 
throughput is equivalent to the segment flow rate. Similar to a standard fundamental diagram, 
as the vehicle accumulation increases the network throughput also increases until the system 
reaches its capacity. A further increase in the network accumulation results in the network 
break down. The maximum throughput represents the system capacity. As can be seen in the 
diagram, the maximum vehicle accumulation and flow rates on the sample day are higher than 
those for the 80% demand case. The system is operating at capacity during the peak hour (6 
a.m. to 7 a.m.) for the sample day. When the demand is reduced the system is operating 
slightly below capacity. 

Deterministic Model Testing 
In demonstrating the two-state model application, a set of simple scenarios were constructed. 
The model interpretation and travel time reliability reporting issues are documented elsewhere 
[5] and thus are not discussed further in this paper.  

Two sets of O-D tables were modeled using the simulation test bed. These O-D tables 
included the May 7, 2002 demand from 5 a.m. to 12 p.m. and a scaled demand (80% of the 
May 7 O-D table). As was discussed earlier, this variability in travel demand is within the 
typical day-to-day variability that was observed in the field. Given the simulation output 
results, travel time data were extracted for a single hour (7 a.m. to 8 a.m.) and mixed using 
three mixture levels, namely: 20:80, 50:50, and 80:20, respectively. In the case of the 20:80 
mix, the travel time realizations for the 80% demand was repeated 2 times while that for the 
100% demand was repeated 8 times. This mixture is equivalent to having 2 out of 10 days at 
the 80% demand level and 8 days at the 100% demand level. The travel times for the subject 
hour were then mixed and modeled using a mixture of two normal distributions. 

FIGURE 5 illustrates the travel time distributions for each scenario along with the 
calibrated distributions. The solid lines depict the calibrated two-state models while the dashed 
lines illustrate the calibrated uni-modal models. The figure clearly demonstrates that the two-
state model provides a better match to the simulated travel times. The various model 
parameters are summarized in TABLE 1 along with the true values mixture parameters that 
were simulated. Here λ (proportion of data associated with the first distribution: proportion of 
80% demand data), µ1 (mean of first distribution), and σ1 (standard deviation of first 
distribution) are the parameters for the first component distribution, which has a lower mean 
travel time. The λ parameters play a more important role because the two component 
distributions (µ1 and µ2) are likely to be significantly different during the peak periods. In 
addition, the λ parameters play an important role because they can be interpreted as the 
probabilities that a driver’s travel times falls into either state. As demonstrated in TABLE 1, 
the λ parameter estimates are consistent with the actual data mixture rates during the peak 
hours. For example, the λ parameter for the models is 0.5 when a mix of 50:50 is applied. 
Similarly, the λ parameters converge to the correct split of 80:20 and 20:80 thus demonstrating 
the robustness of the EM algorithm. 

Stochastic Model Testing 
In the previous section, the model application was demonstrated using simple deterministic 
scenarios as a first test of the calibration procedure. The next step is to test the model 
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calibration procedures for more complex scenarios. Specifically, in this section more travel 
demand levels are introduced together with stochastic variations in the demand levels. 

Scenario Development 
When the two sets of travel times are mixed for the 7 to 8 a.m. peak period, the sample is 
unbalanced because the traffic demand in the more congested days is typically higher than that 
in the less congested days. In order to quantify the impact of the number of travel time 
observations on the parameter estimates, the analysis is conducted twice once with a 
proportional sample and once with an equal sample size. These sampling schemes have 
different interpretations as was discussed elsewhere [5].  

First, different O-D tables were prepared and supplied to the traffic models to generate 
travel time data under various congestion levels. Specifically, the O-D tables for May 7, 2002 
from 6 a.m. to 9 a.m. were used as the base case. Two sets of random numbers were generated 
as scale factors that were multiplied by the base case. Each of the sets had a total of 500 
realizations following a uniform distribution ranging from 1.0 to 1.1 (for the higher demand 
set) and from 0.5 and 0.6 (for the lower demand set). The O-D tables were constructed by 
multiplying the base O-D table by the randomly generated scale factors to construct a total of 
1,000 O-D demand scenarios (500 high demand and 500 low demand). These 1,000 O-D 
demands were simulated using the INTEGRATION software to construct a database of 1,000 
simulation runs, as illustrated in STEP1 of FIGURE 6. 

Second, in order to vary the mix of high and low demand days, the simulation results 
were randomly selected from the database of simulation runs. Specifically, a total of 200 
simulation runs were randomly drawn from the 1,000 runs. In order to determine the number 
high and low demand simulation runs to be included in a sample, a binomial distribution with 
n=200 and p= (0.1, 0.2, 0.5, 0.8, 0.9) was used as summarized in TABLE 2 and FIGURE 6 
rather than using fixed values. The travel time data were then extracted from the selected 
simulation runs and two-state models were then calibrated to the data, as illustrated in STEP2 
of FIGURE 6. As described before, two different sets of travel time data were tested; one that 
included all the travel times and another that included an equal number of observations from 
the two demand levels (high and low). Prior to calibrating the models, 2.5% of the data were 
removed from both tails of the travel time distribution to filter out outliers, consequently only 
95% of the travel times were used for the model calibration. 

Finally, the 200 run sample runs were simulated 1,000 times using a Monte Carlo (MC) 
simulation to generate a total of 1,000 mixed model parameters. 
Proportional Sampling Case 

As previously described, if we consider a fixed proportion sample – in this case a 100% sample 
size – the number of observations for the higher demand levels is larger than that for the lower 
demand levels and thus the mixture parameter λ is biased towards the longer travel times. 
Using five mixture distributions a total of 1000 MC simulations were executed and the two-
state model parameters were calibrated for each simulation (λ, µ1, µ2, σ1, σ2). 

The calibrated model parameters were then compared to the true parameter values. The 
true mixture parameter λ was computed as the ratio of the number of samples drawn from the 
uncongested demand levels which was derived from the binomial distribution to the total 
number of samples (in this case 200 samples). In addition, the true mean and standard 
deviation of the component distributions was computed for the high and low demand scenarios 
separately prior to mixing the data. 
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After conducting the analysis it was concluded that some parameter estimates were 
significantly under- or over-estimated. These erroneous model predictions occur when the 
number of observations in one distribution is very small compared to the other. For example, 
when the low demand cases constitute only 3% of the days (λ=0.03, µ1=839, µ2=2127, σ1=70, 
and σ2=449) the EM algorithm estimates the model parameters as λ=0.29, µ1=1979, µ2=2159, 
σ1=622, and σ2=384. Consequently, the EM algorithm introduces more observations into the 
lower probability distribution. The problem only occurred for 7 percent of the observations. 

As demonstrated in TABLE 3 and FIGURE 7 the calibrated parameters are generally 
consistent with the true parameter values in terms of magnitude. The errors in the component 
travel time distribution means (µ1 and µ2) range from 0% to 5%, as demonstrated in TABLE 3. 
This is also evident in the µ1 and µ2 scatter plots. Since the slopes of the regression lines (1.017 
and 0.982) are very close to 1.0, it can be concluded that the mean of the first distribution (µ1) 
was overestimated by 1% on average and the mean of the second distribution (µ2) was 
underestimated by 3% on average. The proportion of low demand days (λ) was underestimated 
as expected given that the number of high demand travel times was disproportionally high. The 
standard deviation estimates for both distributions (σ1 and σ2) were also underestimated by 
19% and 20%, respectively. It is interesting to note that the error in the λ, µ1, and σ1 parameter 
estimates decreases while that for the µ2 and σ2 parameters increases as the proportion of low 
demand days increases.  

In summary, the distribution mean estimates (µ1 and µ2) are slightly underestimated 
while the proportion of days in the first state (λ) and the standard deviation of each state (σ1, 
and σ2) produce a relatively small prediction error (R2 ranges from 97% to 100%). 

Fixed Size Sampling Case 
The previous analysis considered the use of proportional sampling. In this section equal sample 
sizes are considered (i.e. the number of travel time realizations in each state are equal). A total 
of 20 outliers observations were indentified and excluded from the analysis. These outliers 
were caused when a very small proportion of observations are within one of the two states. 

As demonstrated from the results of TABLE 3, the EM algorithm produces model 
parameter estimates that are consistent with the true parameter values. Specifically, the 
estimated proportion of days in low demand state (λ parameter) is consistent with the true 
values with prediction errors ranging from 2 to 10%. Furthermore, the estimated λ parameter 
offers a perfect match to the true values (slope 1.022, R2 1.000). The prediction errors in the 
state mean estimates (µ1 and µ2) range from 0 to 8%. It should be noted, however, that the 
prediction error for the higher demand state parameters (µ2 and σ2) was higher than those 
produced for the proportional sampling case. The highest prediction errors were observed for 
the various distribution standard deviations (σ1 and σ2) with errors in the range of 14% and 
23%, respectively. 

In summary, fixed size sampling is more suitable for predicting the probability of 
encountering a specific state on a typical daily commute. 

MODEL APPLICATION IN TRAVEL TIME RELIABILITY MODELING 
The paper presented a novice framework for use in measuring the level of unreliability along a 
roadway segment. The framework is cast as a two-state model that computes the probability a 
driver will encounter congestion on a typical commute and the associated travel time 
distribution associated with congestion. The application of such a model would require 
gathering data over multiple days using vehicle probes and calibrating five parameters, namely: 
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the mean and standard deviation of each travel time distribution and the probability of 
encountering congestion (system breakdown). The study demonstrated that the use of equal 
sample sizes in each state is required in order to achieve a reasonable level of accuracy 
(estimate of probability of congestion with a margin of error of 10%). Further refinement of the 
model is required to introduce other factors into the model including weather and incident 
impacts on the probability of encountering congestion. This framework can be easily integrated 
in the travel time unreliability model developed by Tu et al. [25]. Specifically, the model 
estimates the travel time unreliability as the product of the probability of traffic breakdown 
(congestion) multiplied by some measure of travel time variability after breakdown plus the 
probability of free-flow conditions (uncongested) multiplied by the travel time variability in 
free-flow conditions. The parameter λ that is proposed in this paper represents that probability 
of breakdown. The proposed two-state model would provide an estimate of the parameters 
required to compute the measure of travel time unreliability.  

CONCLUSIONS 
A previous study demonstrated that travel times drawn from field data over multiple weekdays 
are best modeled using mixture distributions as opposed to single distributions. These observed 
differences in travel time experiences can either be attributed to the fact that traffic conditions 
from one day to another may differ marginally, however result in major differences in travel 
time experiences, as was demonstrated in this paper. Alternatively, during the shoulder periods 
(build-up or decay of congestion) some drivers may experience major congestion while others 
may not. The study demonstrates that microscopic traffic simulation is capable of producing 
multimodal distributions and thus can be used to validate statistical tools for the modeling of 
travel time reliability. Specifically, the study demonstrates how two-state models can evolve 
and furthermore validates the expectation maximization algorithm for estimating the two-state 
model parameters.  

From a model application standpoint the use of a two-state model can be viewed 
analogous to a weather forecast. Typically, the weather forecast provides probability of 
precipitation and corresponding precipitation intensity in the event that precipitation occurs. 
Similarly, within the context of travel time information the driver will be given a probability of 
encountering congestion together with some information on the possible duration of the travel 
time if he/she encounters congestion. If differences in travel time are associated with differing 
conditions from day to day then the use of equal sample sizes is more appropriate. 
Alternatively, if differences in travel time are attributed to different experiences within an 
analysis period then the use of the proportional sampling is more appropriate. 

REFERENCES 
1. Ban, X., et al., Optimal Sensor Placement for Freeway Travel Time Estimation. 

Transporation Research Board Annual Meeting 2009, 2009. 
2. Ban, X., et al., Performance evaluation of travel time methods for real time traffic 

applications. In Proceedings of the 11th World Congress on Transport Research (CD-
ROM). 2007. 

3. FHWA, Travel Time Reliability: Making It There on Time, All the Time, FHWA-HOP-06-
070. 2006. 

4. NCHRP, Cost-Effective Performance Measures for Travel Time Delay, Variation, and 
Reliability. Report No. 618. 2008. 



  33 

5. Guo, F., S. Park, and H. Rakha, A Multi-state Travel Time Reliability Model. Unpublished 
paper, 2009. 

6. Wikipedia. Mixture Model.  2009 15 June, 2009; Available from: 
http://en.wikipedia.org/wiki/Mixture_model. 

7. Marin, J.-M., K. Mengersen, and C.P. Robert, Bayesian modelling and inference on 
mixtures of distributions. Handbook of Statistics 25, Bayesian thinking: modeling and 
computation edited by D.K. Dey and C.R. Rao. 2005: Elsevier-Sciences. 

8. Van Aerde, M. and S. Yagar, Dynamic Integrated Freeway/Traffic Signal Networks: A 
Routeing-Based Modelling Approach. Transportation Research, 1988. 22A(6): p. 445-
453. 

9. Van Aerde, M. and S. Yagar, Dynamic Integrated Freeway/Traffic Signal Networks: 
Problems and Proposed Solutions. Transportation Research, 1988. 22A(6): p. 435-443. 

10. Van Aerde, M. and H. Rakha, INTEGRATION © Release 2.30 for Windows: User's Guide 
– Volume I: Fundamental Model Features. 2007, M. Van Aerde & Assoc., Ltd.: 
Blacksburg. 

11. Van Aerde, M. and H. Rakha, INTEGRATION © Release 2.30 for Windows: User's Guide 
– Volume II: Advanced Model Features. 2007, M. Van Aerde & Assoc., Ltd.: 
Blacksburg. 

12. Rakha, H., et al., Vehicle dynamics model for predicting maximum truck acceleration 
levels. Journal of Transportation Engineering, 2001. 127(5): p. 418-425. 

13. Rakha, H. and I. Lucic, Variable power vehicle dynamics model for estimating maximum 
truck acceleration levels. Journal of Transportation Engineering, 2002. 128(5): p. 412-
419. 

14. Van Zuylen, J.H. and L.G. Willumsen, The most likely trip matrix estimated from traffic 
counts. Transportation Research, 1980. 14B: p. 281-293. 

15. Willumsen, L.G., Estimation of an O-D matrix from traffic counts: A review. 1978, 
Institute for Transport Studies, Working paper no. 99, Leeds University. 

16. Rakha, H., H. Paramahamsan, and M. Van Aerde, Comparison of Static Maximum 
Likelihood Origin-Destination Formulations, in Transportation and Traffic Theory: 
Flow, Dynamics and Human Interaction. 2005, Proceedings of the 16th International 
Symposium on Transportation and Traffic Theory (ISTTT16). p. 693-716. 

17. Van Aerde, M., H. Rakha, and H. Paramahamsan, Estimation of Origin-Destination 
Matrices: Relationship between Practical and Theoretical Considerations. 
Transportation Research Record 2003. 1831: p. 122-130  

18. Hellinga, B.R. and M. Van Aerde. Estimating dynamic O-D demands for a freeway 
corridor using loop detector data. 1998. Halifax, NS, Canada: Canadian Society for 
Civil Engineering, Montreal, H3H 2R9, Canada. 

19. Van Aerde, M., B.R. Hellinga, and G. MacKinnon. QUEENSOD: A Method for 
Estimating Time Varying Origin-Destination Demands For Freeway 
Corridors/Networks. in 72nd Annual Meeting of the Transportation Research Board. 
1993. Washington D.C. 

20. Zhang, W., A. Medina, and H. Rakha, Statistical Analysis of Spatiotemporal Link and 
Path Flow Variability. Proceeing of the 2007 IEEE Intelligent Transportation Systems 
Conference Seatle, WA, USA, Sept. 30 - Oct. 3, 2007, 2007. 

21. Virginia Department of Transportation, PM2.5 Air Quality Analysis: Route 66. 2006. 

http://en.wikipedia.org/wiki/Mixture_model


  34 

22. Rakha, H. and B. Crowther, Comparison of Greenshields, Pipes, and Van Aerde car-
following and traffic stream models. Transportation Research Record. , 2002(1802): p. 
248-262  

23. Rakha, H., I. El-Shawarby, and M. Arafeh, Trip Travel-Time Reliability: Issues and 
Proposed Solutions. 2009. 

24. Geroliminis, N. and C.F. Daganzo, Macroscopic modeling of traffic in cities. 86th Annual 
Meeting Transportation Research Board, Washington D.C., 2007. 

25. Tu, H., J.W.C. Van Lint, and H.J. Van Zuylen. Travel Time Reliability Model on Freeways. 
in 87th Transportation Research Board Annual Meeting. 2008. Washington D.C. 

 
 



  35 

LIST OF TABLES 
TABLE 1  Model Calibration Validation (Fixed Mixture) ............................................................................... 36 

TABLE 2  Summary Simulation Scenarios ....................................................................................................... 37 

TABLE 3  Model Estimate Comparison ........................................................................................................... 38 

 

LIST OF FIGURES 
FIGURE 1  Sample I-66 network configuration. .............................................................................................. 39 

FIGURE 2  Traffic demand, fundamental diagram, and travel time distribution. ........................................ 40 

FIGURE 3  Travel time distributions. ............................................................................................................... 41 

FIGURE 4  Traffic demands and MFD. ............................................................................................................ 42 

FIGURE 5  Simulated Travel Time Distributions and Model Fits .................................................................. 43 

FIGURE 6  Stochastic Scenario Development Framework ............................................................................. 44 

FIGURE 7  Estimated vs. True Parameter Estimates (Proportional Sampling Case) .................................... 45 

 



  36 

TABLE 5  Model Calibration Validation (Fixed Mixture) 

Ratio 
λ µ1 µ2 σ1 σ2 

TRUE Estimate Diff. TRUE Estimate Diff. TRUE Estimate Diff. TRUE Estimate Diff. TRUE Estimate Diff. 
20:80 0.2 0.18 -8% 821 833 1% 1539 1529 -1% 56 48 -13% 136 128 -6% 
50:50 0.5 0.50 0% 821 826 1% 1539 1525 -1% 56 52 -7% 136 125 -8% 
80:20 0.8 0.82 2% 821 824 0% 1539 1508 -2% 56 53 -5% 136 114 -16% 
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TABLE 6  Summary Simulation Scenarios 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 
Non-congested runs B(200,0.1) B(200,0.2) B(200,0.5) B(200,0.8) B(200,0.9) 
Congested runs 200- B(200,0.1) 200- B(200,0.2) 200- B(200,0.5) 200- B(200,0.8) 200- B(200,0.9) 
Number of repetitions 1000 1000 1000 1000 1000 
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TABLE 7  Model Estimate Comparison 

Classification 
Mean λ Mean Difference 

True Estimated λ µ1 µ2 σ1 σ2 

Pr
op

or
tio

na
l 

Sa
m

ple
 S

ize
 Scenario1 0.101 0.048 53% 4% 1% 43% 14% 

Scenario2 0.200 0.109 46% 2% 1% 29% 14% 
Scenario3 0.502 0.347 31% 1% 1% 11% 15% 
Scenario4 0.799 0.691 14% 1% 3% 6% 22% 
Scenario5 0.899 0.845 6% 0% 5% 4% 29% 

Eq
ua

l 
Sa

m
ple

 S
ize

 Scenario1 0.100 0.094 10% 3% 1% 32% 14% 
Scenario2 0.200 0.196 4% 2% 1% 19% 14% 
Scenario3 0.500 0.508 2% 1% 1% 8% 18% 
Scenario4 0.798 0.817 2% 0% 4% 5% 28% 
Scenario5 0.900 0.923 3% 0% 8% 4% 39% 
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FIGURE 5  Sample I-66 network configuration. 
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FIGURE 6  Traffic demand, fundamental diagram, and travel time distribution. 
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FIGURE 7  Travel time distributions. 
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FIGURE 8  Traffic demands and MFD. 
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FIGURE 9  Simulated Travel Time Distributions and Model Fits 
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FIGURE 10  Stochastic Scenario Development Framework 
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FIGURE 11  Estimated vs. True Parameter Estimates (Proportional Sampling Case) 
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Abstract— This paper attempts to quantify 
the impact of traffic incidents on travel 
time reliability using a newly proposed 
multi-state travel time reliability model. 
Given that the multi-state travel time 
reliability model provides significantly 
better fits when compared to using a single-
mode density function, it is possible to 
quantify the incident impacts more 
accurately. In order to obtain travel times, 
the study simulates weekday traffic on a 
section of I-66 over 17 days, once with 
incidents and once without them, using the 
INTEGRATION microscopic traffic 
simulation software. The simulated travel 
time data sets are then used to fit a three-
state travel time reliability model (three 
normal distributions) to calibrate the 
parameters of the density function using the 
Expectation Maximization (EM) algorithm. 
The study demonstrates that incidents do 
not introduce an additional component 
distribution when congestion has already 
onset; instead they increase the mean travel 
time and variability in travel times for the 
congested conditions. For instance, the 90th 
percentile travel time of the second 
component distribution increases by up to 
93 percent. Additionally, the study 
addresses technical issues related to the 
calibration and interpretation of the model 
from a practical standpoint. 

INTRODUCTION 
raffic incidents are one of the major factors 

contributing to severe non-recurring congestion 
on U.S. highways. The Highway Capacity Manual 
(HCM) reported that traffic incidents are responsible 
for more than 50% of freeway congestion [1]. A 
better understanding of the impact of traffic 
incidents on travel time reliability is critical to the 
development of efficient traffic control strategies. 
There have been many research efforts in the area of 
traffic incident modeling. In general terms, the 
previous studies can be divided in two categories. 
The first category is to develop traffic incident 
detection algorithms for the implementation of 
automatic incident detection into traffic 

management systems. The other category is to 
quantify the impacts of traffic incidents with regard 
to economic, safety, delay, and other perspectives.  
Specifically, the delay estimation under incidents 
has been studied extensively because it is the 
essential component of a successful and reliable 
Advanced Traveler Information System (ATIS). 

The provision of reliable travel time information 
to roadway users is the main function of ATIS. 
However, it is hard to maintain system reliability 
because errors in travel time estimation increase as 
congestion gets heavier due to increased travel time 
variability.  Consequently, travel time reliability is 
being provided to travelers and system managers to 
help make better decisions.  In other words, travel 
time reliability information helps drivers secure 
their on-time travels by reducing uncertainty.  It can 
also be used as an operational performance measure 
by traffic operations managers.   

Given that travel time reliability is very useful 
from a practical standpoint, diverse approaches to 
travel time modeling have been suggested. A 
common methodology is to use a probability density 
function such as a normal, log-normal, or Weibull 
distribution. However, a single-mode density 
function frequently does not fit well to field-
measured travel time data. This is clearer if travel 
times are collected in transition periods such as a 
time window changing from a congested state to an 
uncongested one, or vice versa.  

In order to bridge this gap, a multi-state travel 
time reliability model was proposed to provide more 
good fits by allowing the use of a combination of 
multiple probability distribution components [2, 3]. 
Consequently, the objective of the research 
presented in this paper is to quantify the impacts of 
traffic incidents on travel time reliability more 
accurately using the multi-state travel time 
reliability model. In addition, the study aims to 
answer technical questions that potentially arise 
during the calibration and interpretation of the 
model from a practical standpoint.  

The paper is organized as follow. First, previous 
studies on traffic incidents and the proposed multi-
state travel time reliability model are reviewed. 
After that, the details on the modeling of traffic 
incidents are followed. Specifically, the construction 
of simulation network, origin-destination (O-D) 
traffic demands, and design of traffic incident 
scenarios are explained. The travel time reliability 
under incident-free conditions is then quantified 
using the multi-state travel time reliability model. 
Next, the impacts of the traffic incidents are 

T 
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analyzed quantitatively and graphically. Finally, the 
research conclusions are presented. 

STATE-OF-THE-ART MODELING OF 
TRAVEL TIME RELIABILITY 

Traffic Incidents 
Traffic incidents are defined as any non-recurring 

events that result in a roadway capacity reduction or 
irregular high- traffic demand, such as traffic 
crashes, disabled vehicles, spilled cargo, highway 
maintenance and reconstruction projects, and special 
non-emergency events [4].  It has been reported that 
traffic incidents are responsible for a significant 
amount of freeway congestion. For instance, it was 
addressed in the 2000 Traffic Incident Management 
Handbook that they account for between 50 and 60 
percent of total congestion delays in most 
metropolitan areas [4]. 

Since traffic incidents induce substantial negative 
impacts on traffic flow, many publications have 
attempted to address measures related to traffic 
incidents.  For example, the Federal Highway 
Administration (FHWA) continuously updates 
handbooks on how to manage traffic incidents 
efficiently [4-7].  The FHWA reports provide 
guidance on the following applications: incident 
detection, verification, motorist information, 
response, site management, traffic management, 
clearance, and recovery.  On the other hand, there 
were several studies in the area of developing 
efficient algorithms for the estimation of traffic 
incident duration and induced delay.  For example, 
an incident-related congestion estimation algorithm 
that uses occupancy data from loop detectors was 
developed by the Washington State Transportation 
Center (TRAC) with the aim of implementing the 
algorithm within the system [8]. 

Traffic incident management has been 
emphasized for the mitigation of negative impacts of 
incidents. However, literature on the characteristics 
of traffic incidents, such as duration, incident rate, 
and queue length, are limited.  From the literature 
that does exist, Prevedouros et al. conducted a study 
that summarized real-world incident statistics in the 
United States, the United Kingdom, and Greece, and 
developed models that predict incident duration and 
delays [9].  Specifically, the average incident 
duration, incident rate, and other characteristics 
were summarized in the study.  The average incident 
duration was variable depending on the time and 
location of data collection: London M25 – 69 min., 
British Motorways – 46 min., Los Angeles I-10 – 

20.7 min., Portland Metropolitan Area – 33 min., SP 
California F I-880 – 25 min., and Attica Tollway – 
33.3 min.   

Smith and Smith (2001) developed a model to 
estimate the clearance time of freeway accidents 
using traffic data received from the Virginia 
Department of Transportation’s (VDOT’s) Smart 
Traffic Center.  The study investigated the 
performance of three models: a stochastic model, a 
nonparametric regression model, and a classification 
tree model [10].  In the course of investigation, the 
average clearance time from all traffic incidents 
detected in the state of Virginia was modeled using 
a Weibull distribution. The clearance time 
calculated from the distribution parameters was 40 
min.  This clearance time was adopted as the 
duration of traffic incidents for our study because a 
section of Interstate 66 (I-66) in Virginia was used 
for the simulation network in this study. 

Multi-state Travel Time Reliability 
Model 
A multi-state travel time reliability model was 

proposed for the quantification of travel time 
reliability [2, 3].  It provides a better fit to field-
observed travel time distributions when compared to 
the state-of-practice single-mode travel time 
reliability models. It generates traveler-friendly 
travel time reliability information that provides the 
probabilities of encountering congested and 
uncongested states over a time period of interest as 
well as the mean and variance of the travel time 
distributions; e.g., “the probability of encountering a 
congested state is 95% and, if it happens, the 
expected travel time will be 55 minutes.” 
Specifically, mixture models, which are defined as a 
distribution that convexly combines component 
distributions as formulated in Equation 1, are used. 

1
( , ) ( , )

K

k k
k

f T f Tλ θ λ λ θ
=

= ∑   (1) 

where λ=(λ1, λ2,…, λn) is a vector of mixture 
coefficients and θk=(θk1, θk2,…, θkI) is a vector of 
model parameters for the kth component distribution; 
fk(t|θk) is the density function for the kth component 
distribution. 

For instance, field-observed morning peak travel 
times collected in San Antonio, TX are fitted to a 
three-component model and a log-normal 
distribution, as illustrated in Fig. 1. Specifically, the 
three-component model is composed of three-
component normal distributions. The figure clearly 
shows the advantages of the multi-state model over 
the single-mode model. There are several 
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methodologies available to estimate the mixture 
model parameters such as the Expectation 
Maximization (EM) algorithm, Markov-chain 
Monte Carlo (MCMC) simulation, and spectral 
methods [11]. This study uses the EM algorithm to 
estimate the model parameters. More details on the 
model are available in the previous studies [2, 3]. 

 

MODELING OF INCIDENT TRAVEL 
TIMES 

Since field-measured travel time data sets under 
incident conditions were very limited, this study 
used microscopic simulation models to obtain travel 
times under typical traffic conditions and under 
incident conditions.  Specifically, a section of I-66 
eastbound was used as the study network and the 
INTEGRATION software was used to build 
simulation models. The details on the modeling 
procedures are provided in the next section. 

Network Construction 
The network used in the study is a section of I-66 

eastbound that feeds commuting traffic from the 
west to the Washington, D.C. metropolitan area 
[12]. Specifically, the network runs from Manassas 
(Virginia) on the west end to Vienna (Virginia) on 
the east end (Exit 46 to Exit 62). Seven on-ramps 
and seven off-ramps are included in the 16-mile 
study section.  

The number of lanes along the section varies from 
three to six including acceleration and deceleration 
lanes. The posted speed limit was 65 mph. Due to 
the commuting vehicles from the west to 
Washington, D.C., traffic is heavy in the morning 
peak period from 5:00 a.m. to 10:00 a.m.  The 
estimated average daily traffic (ADT) volume on the 
section from Route 29 (Lee Highway) to Route 234 
(Sundly Road) was 87,000 vehicles per day in 2005 
[13]. 

Origin-Destination Traffic Demands 
Traffic demand is one of the most essential pieces 

of data for a reliable traffic simulation model. This 
study calculated O-D traffic demand tables from the 
loop detector data collected over a 3-month period 
between May 1 and July 31, 2002. Specifically, the 
study segment had a total of 31 loop detectors 
spaced over 0.5 miles. A total of 44 days of 15-
minute O-D demands was estimated by  the 
maximum likelihood approach using the QueensOD 
software [12]. From among the 44 days, 17 days of 
traffic demands were selected and used as the 
demand input data for this study; three Mondays, 
four Tuesdays, four Wednesdays, two Thursdays, 
and four Fridays. In other words, a total of 17 days 
was simulated with the 17 days of demands instead 
of using a single-day demand with different random 
number seeds. Consequently, each of the 
simulations can be considered as a realization of 
typical weekdays.  

July 10, 2002 (a Wednesday) was the highest 
demand day among the 17 days, while July 22, 2002 
(a Monday) had the lowest demand. The O-D 
demand for July 22 was 16% lower than July 10. 
The variations in the O-D demands are illustrated in 
Fig. 2: plot (a) shows the total demand (sum of all 
O-D demands) for the two days and plot (b) shows 
one of the O-D demands of interest, which includes 
the O-D demand traveling from the west end to the 
east end of the network. 

 

Incident Modeling 
There are numerous factors that categorize traffic 

incidents such as type, location, severity, and 
duration. Traffic incidents include disablements, 
accidents, or others. They are also categorized based 
on the horizontal and longitudinal locations where 
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Fig. 1. Three-component mixture normal and log-normal density 
function. 
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Fig. 2. Traffic Demand. 
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they occur. Severity can be defined as shoulder 
disablement, shoulder accident, one-, two-, or three-
lane blocked. 

Three traffic incident scenarios were designed in 
this study by varying the severity of traffic incidents. 
The duration of the traffic incidents was fixed at 40 
minutes based on the mean duration of all the traffic 
incidents in Virginia [10]. The longitudinal location 
was set to upstream of an off-ramp (Exit 52) where 
localized congestion occurs due to the high off-ramp 
traffic demand. The details of the traffic incident 
scenarios are described in TABLE I. 

 

TRAVEL TIME RELIABILITY 
UNDER INCIDENT-FREE 

CONDITIONS 
Travel Time Data Set 
Although each of the 17 days of demands 

consisted of the entire single-day demands (24 
hours) in every 15-minute interval, morning peak 
hours were only simulated from 5:00 a.m. to 10:00 
a.m. The simulated travel times for the 17 days were 
then mixed together to take the travel time variation 
over the 17 days into account. This mixed travel 
time data set can be thought of as a historical travel 
time data set under incident-free conditions 
aggregated over 17 days. 

Since there were many O-D pairs in the demand 
tables, the study selected one O-D pair for the 
analysis, which includes the vehicles originating 
from the west end (Manassas, VA) and traveling to 
the east end (Vienna, VA). Consequently, all the 
study results are based on the selected O-D pair if 
any specific descriptions are not given in the text.  

In general, the longest travel times were observed 
from 7:00 a.m. to 8:00 a.m. and the demand of 
interest was higher from 6:00 a.m. to 8:00 a.m. 
compared to other time periods during the morning 
peak hours. In order to quantify the travel time 
reliability over time-of-the-day, 1-hour travel time 
data sets were extracted from the mixed travel time 
data set for every 15 minutes from 5:00 a.m. to 9:00 

a.m.  Consequently, a total of 17 travel time data 
sets were generated and used to fit a multi-state 
model. 

Calibration of Multi-State Model   
Initially, a two-component mixture model that has 

two normal component distributions was used to fit 
the travel times but it seemed that there were three 
components in the travel time distributions: first, an 
uncongested state; second, a medium-level 
congested state; and third, a heavily congested state.  
Fig. 3 clearly shows that the three-component model 
provided a better fit to the travel time distribution 
than did the two-component model.  

 
Another technical issue which arose through the 

calibration procedures was that a multi-state model 
should be calibrated multiple times in order to 
ensure that the calibrated parameters are stable from 
a practical standpoint. This is because using the EM 
algorithm generates a unique parameter set every 
time it calibrates a model, even though the same 
travel time data set is used. For instance, the 
variation in the mixture coefficient is illustrated in 
Fig. 4. Fig. 4 shows the calibrated mixture 
coefficients as the results of 10 calibrations using 
the EM algorithm with the same travel time data set. 
Consequently, there is a need to study how to 
determine a representative parameter set effectively 
from a practical standpoint. In this study, 10 
calibrations were carried out for a single 1-hour 
travel time data set, and the average of 10 
parameters was then used as a representative 
parameter.  
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Fig. 3. Two- and Three-state Mixture Model for Without Incident 
 

TABLE VIII 
Proposed Traffic Incident Scenarios 

Index Length Location Time Severity Begin End 

Scenario-1 

250 m 
(four lanes) 

250 m 
upstream  
from Exit 

52 

6:00 
a.m. 

6:40 
a.m. 

One lane blocked  
from shoulder 

Scenario-2 Two lanes blocked  
from shoulder 

Scenario-3 Three lanes blocked  
from shoulder 
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Calibration Results 
The calibration results showed that the congestion 

level became severer from 5:00 a.m. until around 
8:00 a.m., as the traffic demand increased. In terms 
of the shape of the travel time distribution, the third 
component distribution showed growth on the right 
hand side and shrinkage on the left hand side during 
the morning peak hours. The model parameters of 
the third component distribution clearly 
demonstrated the changes in travel time reliability.  

As can be seen in TABLE II, the mixture 
coefficient, mean travel time, and standard deviation 
of the third component distribution increased and 
then decreased. For instance, the third component 
accounted for 30 percent of the travel time 
distribution and had a mean travel time of 108 
minutes (6503 seconds) in the time window from 
7:00 a.m. to 8:00 a.m. Furthermore, the variability 
increase can be identified from Fig. 5. The 
difference between the mean travel time and the 90th 
percentile became bigger around 6:00 a.m. to 8:00 
a.m. 

 

 

 
The calibrated mixture model parameters can be 

interpreted in a two-step reporting procedure. The 
first step is reporting the probability of encountering 
each traffic state. In the three-state mixture model, 
the first state will be an uncongested state and the 
second and third states will be congested states. The 
second step is reporting the expected travel time 
under a given traffic state. For example, the 
travelers who plan to leave around 6:00 a.m. can be 
informed of the probability of encountering each 
state and the expected travel time from the 
calibrated parameters in TABLE II: Uncongested 
state – 45% and 885 seconds; medium congested 
state – 19% and 1,431 seconds; and heavily 
congested state – 36% and 4,543 seconds. 
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Fig  4   Variation in Mixture Coefficient When using the EM 
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Fig  5  90th Percentile and Mean Tra el Time of Third Component 

TABLE IX 
Mixture Model Parameters for Travel Times without 

Incident 

Time 
Mixture Coefficient Mean Travel Time (s) Standard Deviation 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

5:00 69% 19% 12% 864 1350 2372 60 304 659 
5:15 60% 20% 20% 872 1415 2831 55 328 926 
5:30 52% 16% 32% 874 1288 3095 49 238 1319 
5:45 51% 16% 33% 885 1554 4010 55 421 1489 
6:00 45% 19% 36% 885 1431 4543 53 386 1614 
6:15 39% 23% 37% 888 1427 5385 54 378 1742 
6:30 38% 26% 36% 884 1435 5851 52 388 1704 
6:45 39% 29% 32% 882 1476 6356 51 397 1619 
7:00 41% 29% 30% 884 1493 6503 54 394 1561 
7:15 43% 34% 23% 878 1474 6444 54 375 1401 
7:30 47% 35% 18% 880 1715 6058 57 571 1368 
7:45 47% 38% 15% 870 1503 6070 55 319 991 
8:00 50% 33% 17% 863 1442 5306 52 261 1017 
8:15 58% 37% 6% 864 1663 6022 55 263 786 
8:30 51% 27% 22% 852 1268 3691 47 173 760 
8:45 58% 19% 23% 851 1141 1790 49 149 257 
9 00 54% 16% 30% 846 1057 1572 48 123 325 
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IMPACTS OF TRAFFIC INCIDENTS 
ON TRAVEL TIME RELIABILITY 

Travel Time Data Set under Incident 
Conditions 
Given the 17 days of O-D demands, each of the 

days was simulated three times with one of the 
traffic incident scenarios. In other words, each of the 
traffic incident scenarios was simulated with the 17 
days of O-D demands. Consequently, four travel 
time data sets were prepared and used to mix the 
travel times to represent different levels of traffic 
conditions under the traffic incidents: 1) Without-
incident, 2) Incident scenario-1, 3) Incident 
scenario-2, and 4) Incident scenario-3. 

First of all, the number of days that had the traffic 
incidents should be determined. In this study, an 
assumption was made that the number of incident 
days would range from 1 to 7. Specifically, 1 day up 
to 7 days (41% of incident days: 7/17) were 
randomly selected out of the 17 days as the incident 
days. The other days (16 - 10 days) were used as the 
incident-free days. Based on the selection of the 
incident days, a new travel time data set was made 
by extracting the travel times from the without-
incident data set and one of the incident data sets 
and mixing them together. Since the incident days 
were randomly selected, the selection procedures 
were repeated 10 times. Consequently, a total of 210 
data sets (3 incident scenarios * 7 numbers of 
incident days * 10 repetitions = 210 data sets) were 
prepared. 

Incident Impacts and Multi-State 
Model Issues 
As explained earlier, each of the data sets was 

used to fit a three-component mixture model 10 
times using the EM algorithm, and then the 10 
parameter sets were averaged. The mixture model 
parameter calibration was conducted only for the 
travel times of the vehicles leaving their origin (the 
west end of the network) between 6:00 a.m. and 
7:00 a.m. because the incidents occur at 6:00 a.m. 
and last till 6:40 a.m. in all the traffic incident 
scenarios.   

The calibrated parameters are shown in TABLE 
III along with the parameters for the travel times 
without incidents for an easy comparison. In general, 
all the parameters of the first component remained 
almost constant for all the incident scenarios as the 
number of incident days increased. This implies that 
the probability of falling in an uncongested traffic 
state remained constant even though traffic incidents 

occurred on the roadway. In contrast, the parameters 
of the second component distribution increased as 
more incidents were introduced while the mixture 
coefficient of the third component decreased. These 
results clearly demonstrate that the second 
component distribution has more weight, as 
illustrated in Fig. 6. 
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Fig. 6. Comparison of the Incident-free Model to the Incident 
S i 3 (6 00   00 )  

TABLE X 
Mixture Model Parameters under Incident Conditions 

Classification 
Number of incident days 

0 1 2 3 4 5 6 7 

Sc
en

ar
io

 1
 

Mix. 
Coef. 

1st 45% 45% 45% 45% 46% 45% 45% 46% 
2nd 19% 20% 20% 20% 21% 19% 23% 25% 
3rd 36% 34% 35% 35% 33% 36% 31% 29% 

Mean 
Travel 
Time 

1st 885 885 885 885 886 884 885 887 
2nd 1431 1535 1574 1632 1792 1604 2007 2317 
3rd 4543 4724 4798 4898 5088 5022 5386 5596 

Std. 
Dev. 

1st 53 54 54 54 55 53 55 57 
2nd 386 436 446 489 590 457 687 860 
3rd 1614 1595 1589 1608 1604 1647 1472 1466 

Sc
en

ar
io

 2
 

Mix. 
Coef. 

1st 45% 45% 45% 46% 45% 45% 47% 47% 
2nd 19% 20% 19% 23% 21% 20% 28% 29% 
3rd 36% 35% 36% 32% 34% 35% 25% 24% 

Mean 
Travel 
Time 

1st 885 885 884 886 885 884 890 890 
2nd 1431 1531 1498 1920 1625 1656 2588 2738 
3rd 4543 4746 4742 5141 5106 5136 5934 6102 

Std. 
Dev. 

1st 53 54 53 56 54 54 61 61 
2nd 386 437 401 592 489 485 925 995 
3rd 1614 1608 1656 1537 1681 1693 1385 1336 

Sc
en

ar
io

 3
 

Mix. 
Coef. 

1st 45% 45% 45% 46% 45% 47% 46% 47% 
2nd 19% 21% 20% 22% 19% 27% 24% 26% 
3rd 36% 34% 35% 32% 36% 25% 30% 27% 

Mean 
Travel 
Time 

1st 885 885 885 886 884 890 887 890 
2nd 1431 1571 1454 1866 1646 2561 1998 2642 
3rd 4543 4792 4816 5119 5013 5841 5677 6006 

Std. 
Dev. 

1st 53 54 53 56 53 60 56 61 
2nd 386 462 400 555 447 924 636 836 
3rd 1614 1601 1726 1546 1676 1421 1630 1487 
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The calibration results clearly demonstrated that 
the travel time unreliability decreased as the traffic 
incidents were introduced. The 90th percentile travel 
times increased significantly as more incidents were 
introduced, as illustrated in Fig. 7.  Specifically, the 
90th percentile travel time of the second component 
distribution increased by up to 93 percent when 
compared to the incident-free calibration results. 

 
A technical question arose during the calibration 

procedures for the incident scenarios; that is, does a 
four- component mixture model need to be used in 
order to have better fits? Since the incidents might 
induce significant congestion, we examined if an 
additional component distribution, which might 
have the longest travel times, was introduced. From 
visual inspection of all the travel time histograms, it 
was concluded that no additional component 
distributions was reqyured because severe 
congestion had already onset. Consequently, it can 
be concluded that a two-component or three-
component mixture model is generally sufficient to 
represent diverse traffic conditions found on the 
network. 

CONCLUSION 
This study quantified the impacts of traffic 

incidents on travel time reliability using the multi-
state travel time reliability model. The study results 
demonstrated that the introduction of the traffic 
incidents decreased the travel time reliability 
significantly. Specifically, the congested state 
became more dominant and the travel time 
distribution expanded wider. For instance, the 90th 
percentile travel time of the second component 
distribution increased by up to 93 percent. The study 
also demonstrated that the multi-state travel time 
reliability model provided a better fit than a single-
mode distribution model when analyzing the 

reliability of the travel times under traffic incident 
conditions.  

The study addressed two practical issues related 
to the calibration of the multi-state travel time 
reliability model. First, the study recommended 
multiple repetitions of calibrations when using the 
EM algorithm to ensure the stability of the model 
parameters. Second, the study concluded that a two- 
or three-component mixture model is reasonable to 
use to cover diverse traffic congestion levels. 
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Fig. 7. Relative difference of the travel times of the incident days to 
those of the incident-free day in the 90th Percentile Travel Times. 
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